ELECTROMAGNETIC WAVES

Course Code	19EC3402	Year	II	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering Physics (19EPH131); Engineering Mathematics-I (19EMA101) Engineering Mathematics-II (19EMA102)
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Apply the knowledge of Laws, Concepts and proofs related to Electrostatic Fields and				
	Magnetostatic Fields to solve field problems				
CO2	Distinguish between the static and time-varying fields and derive the corresponding				
	Maxwell's Equations with Boundary Conditions				
CO3	Evaluate wave equations for good Conductors and Dielectrics also develop the power				
	and polarization of waves				
CO4	Analyze the uniform plane wave characteristics for propagation in practical mediums				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2			1	1	2	1	2	2	
CO2	3	3	2	1	2			1	1	2	1	2	2	
CO3	3	3	2	1	2			1	1	2	1	2	2	
CO4	3	3	2	1	2			1	1	2	1	2	2	

Syllabus						
Unit No.	Contents	Mapped CO				
Ι	Review of coordinate systems; Electrostatics: Coulomb's Law, Electric Field Intensity, Field due to a line charge, Electric Flux Density, Guass's law, Electric Potential, Potential gradient, energy stored, Laplace's and Poison's equations.	CO1				
II	Magnetostatics: Steady current, Biot-Savart's law, Static magnetic field due to line current, Magnetic flux Density, Ampere's circuital law, Lorentz force equation, Magnetic Vector Potential, energy stored.	CO1				
III	Time-varying Fields and Maxwell's Equations: Time varying fields, Faraday's law of electromagnetic induction, Displacement	CO2				

	current, Maxwell's equations in point form and integral form,					
	boundary conditions of electromagnetic fields, Polarization,					
	Magnetization.					
IV	Uniform Plane Wave: Wave equation, Wave propagation in free	G00				
	space, wave propagation in conductor and dielectrics, Poynting	CO3				
	Theorem, skin effect, wave polarization, Direction cosines.					
V	Plane Waves at Boundaries and in Dispersive Media:					
	Reflection of uniform plane waves by perfect conductor – normal	GO 4				
	and oblique incidence, standing wave ratio, Reflection and	CO4 -				
	transmission of uniform plane waves by perfect dielectric -					
	normal and oblique incidence.					

Learning Resources

Text Books

1. E. C. Jordan, EM Waves and Radiating Systems, PHI, 2nd edition, 2007

2. William H. Hayt, Engineering Electromagnetics, Tata McGraw Hill Publications

Reference Books

1. R Shevgaonkar, "Electromagnetic Waves ", Tata McGraw Hill Publications 2. Matthew N.O.Sadiku, "Principles of Electromagnetics", Oxford University Press

e- Resources & other digital material

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013electromagnetics-and-applications-spring-2009/
- 2. <u>https://nptel.ac.in/courses/117/103/117103065/</u>
